984 resultados para heart muscle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitory action of the anticancer antibiotic, Adriamycin, on succinate-dependent oxidative phosphorylation in heart mitochondria was markedly potentiated by the presence of hexokinase in the reaction medium. This 'hexokinase effect' was not observed in the oxidation of NAD+-linked substrates, or when liver or kidney mitochondria were used in place of heart mitochondria. These results offer a biochemical explanation for the extreme cardiac toxicity of the drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regular heart beat is dependent on a specialized network of pacemaking and conductive cells. There has been a longstanding controversy regarding the developmental origin of these cardiac tissues which also manifest neural-like properties. Recently, we have shown conclusively that during chicken embryogenesis, impulse-conducting Purkinje cells are recruited from myocytes in spatial association with developing coronary arteries. Here, we report that cultured embryonic myocytes convert to a Purkinje cell phenotype after exposure to the vascular cytokine, endothelin. This inductive response declined gradually during development. These results yield further evidence for a role of arteriogenesis in the induction of impulse-conducting Purkinje cells within the heart muscle lineage and also may provide a basis for tissue engineering of cardiac pacemaking and conductive cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infantile Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase, a glycogen-degrading lysosomal enzyme. We constructed a plasmid containing a 5'-shortened human acid alpha-glucosidase cDNA driven by the cytomegalovirus promoter, as well as the aminoglycoside phosphotransferase and dihydrofolate reductase genes. Following transfection in dihydrofolate reductase-deficient Chinese hamster ovary cells, selection with Geneticin, and amplification with methotrexate, a cell line producing high levels of the alpha-glucosidase was established. In 48 hr, the cells cultured in Iscove's medium with 5 mM butyrate secreted 110-kDa precursor enzyme that accumulated to 91 micrograms.ml-1 in the medium (activity, > 22.6 mumol.hr-1.ml-1). This enzyme has a pH optimum similar to that of the mature form, but a lower Vmax and Km for 4-methylumbelliferyl-alpha-D-glucoside. It is efficiently taken up by fibroblasts from Pompe patients, restoring normal levels of acid alpha-glucosidase and glycogen. The uptake is blocked by mannose 6-phosphate. Following intravenous injection, high enzyme levels are seen in heart and liver. An efficient production system now exists for recombinant human acid alpha-glucosidase targeted to heart and capable of correcting fibroblasts from patients with Pompe disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heart muscle of a cardiac arrest victim continues to accumulate damage throughout its lifetime. This reduces the heart's ability to pump sufficient oxygen and nutrient blood to meet the body's needs. Medical researchers have shown that direct injection of pre-harvested skeletal myoblast cells into the heart can restore some muscle function [1]. This operative procedure usually necessitates the surgeon to open a patient's chest. The open chest procedure is usually a lengthy process and often extends the recovery time of the patient. Alternatively, a high accuracy surgical aid robotic system can be used to assist the thoracoscopic surgery [2][3]. While the robotic surgical method aids faster patient recovery, a less experienced surgeon can potentially cause damage to surrounding tissue.

This paper presents a study into the development of a virtual haptically-enabled heart myoblast injection simulation environment, which can be used to train new surgeons to get hands on experience with the process. The paper also discusses the development of a generic constraint motion technique for needle insertion. Experiments on human performance measures and efficacy, while interacting with haptic feedback training models, are also presented. The experiment involved 10 operators, with each person repeating the needle insertion and injection 10 times. A notable improvement in the task execution time with the number of repetitions was observed. Operators improved their time by up to 300% compared to their first training attempt for a static heart scenario. Under a dynamic heart motion, operator's performance was slightly lower, with the successful rate of completing the experiment reduced from 84% to 75%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To examine the basis for local wall motion abnormalities commonly seen in patients with ischemic heart disease, computer-controlled isolated muscle studies were carried out. Methods: Force patterns of physiologically sequenced contractions (PSCs) from rat left ventricular muscle preparations under well-oxygenated conditions and during periods of hypoxia and reoxygenation were recorded and stored in a computer. Force patterns of hypoxic-reoxygenating and oxygenated myocardium were applied to oxygenated and hypoxic-reoxygenating myocardium, respectively. Results: Observed patterns of shortening and lengthening closely resemble those obtained from ischemic and non-ischemic myocardial segments using ultrasonic crystals in intact dog hearts during coronary occlusion and reperfusion, and are similar to findings reported in angiographic studies of humans with coronary artery disease. Conclusion: The current study, demonstrating motions of oxygenated isolated muscle preparations which are similar to those in perfused segments of intact hearts with regional ischemia, supports the concept that the multiple motions of both ischemic and non-ischemic segments seen in regional myocardial disease can be explained by interactions of strongly and weakly contracting muscle during the physiologic cardiac cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many marine catfish have serrated bony stings (spines), which are used in defense against predators, on the dorsal and pectoral fins. While catfish-induced injuries are generally characterized by the pain associated with envenomation, the stings in some species are sufficiently long and sharp to cause severe penetrating trauma. Most injuries are to the hands of victims, commonly fishermen. We report the death of a fisherman caused by myocardial perforation from a catfish sting. To our knowledge, this is the first such description in the medical literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.